IT用語集

ダイオードとは? 10分でわかりやすく解説

水色の背景に六角形が2つあるイラスト 水色の背景に六角形が2つあるイラスト
アイキャッチ
目次

Unsplashnehru Sulejmanovskiが撮影した写真 

ダイオードは、電源の整流や逆接保護、サージ対策などで必ずと言っていいほど登場する基本部品です。ただし「電流を一方向に流す部品」とだけ理解して選ぶと、順方向電圧降下による電圧不足や発熱、逆耐圧不足による破損、高速スイッチング時のノイズ増加など、設計段階でつまずきやすくなります。本記事では、ダイオードの仕組みと代表的な種類、用途ごとの考え方、選定時のチェックポイントを整理し、読了後に「どの条件を見て、どう選べばよいか」を判断できる状態を目指します。

ダイオードとは何か?

ダイオードは半導体素子の一種で、順方向には電流を流しやすく、逆方向には流れにくい性質を持ちます。この性質を利用して、交流を直流に変換する整流、電源の逆接から回路を守る保護、信号のクランプ(電圧の上限や下限を制限)などを実現します。

重要なのは、ダイオードは理想素子ではないという点です。逆方向でも漏れ電流が流れ、逆耐圧を超えるとブレークダウンが起きます。また順方向でも電圧降下があり、流す電流や温度によって値が変化します。回路設計では、この「現実の振る舞い」を前提に扱う必要があります。

ダイオードの基本概念

一般的なダイオードは、アノード(A)とカソード(K)の2端子を持ちます。アノード側がカソード側より高い電位になると導通しやすく(順方向)、逆になると遮断しやすくなります(逆方向)。

ただし、逆方向が完全な遮断になるわけではありません。漏れ電流はゼロではなく、温度が上がるほど増えやすい傾向があります。さらに逆方向電圧が限界を超えると、意図せずブレークダウンに入り、破壊に至る場合があります(ツェナーダイオードのように、ブレークダウンを動作として利用する種類もあります)。

ダイオードの構造

最も基本的なダイオードは、P型半導体とN型半導体を接合したPN接合で構成されます。P型は正孔が多い領域、N型は電子が多い領域です。PN接合の境界には空乏層が形成され、ここが電流の流れやすさを左右します。

アノード(P型半導体)PN接合(空乏層)カソード(N型半導体)

ダイオードの動作原理

ダイオードの動作は、順方向バイアスと逆方向バイアスで説明できます。

  1. 順方向バイアス:アノードに正、カソードに負の電圧を加えると空乏層の障壁が下がり、電流が流れやすくなります。
  2. 逆方向バイアス:アノードに負、カソードに正の電圧を加えると空乏層の障壁が高くなり、電流が流れにくくなります(ただし漏れ電流は残ります)。

ここで注意したいのは、順方向に電流が流れるとき、ダイオードには必ず電圧降下が生じることです。たとえば電源の整流や保護用途では、この電圧降下がそのまま電圧不足や損失(発熱)につながるため、用途に応じた種類の選択が重要になります。

ダイオードの特性

ダイオードを回路に組み込む際は、主に以下の特性を見ます。

  • 順方向電圧降下(Vf):順方向に電流を流すときの電圧降下です。シリコンPNダイオードは電流条件にもよりますが概ね0.6~1.0V程度になることが多く、ショットキーダイオードはより低い傾向があります。Vfは損失と発熱に直結します。
  • 逆方向耐電圧(Vr / Vrrm):逆方向に加えてよい最大電圧です。電源ラインや誘導性負荷ではスパイクが乗るため、余裕を見た選定が必要です。
  • 漏れ電流(Ir):逆方向でも流れる微小電流です。高インピーダンス回路や省電力設計では影響が出る場合があります。
  • スイッチング特性(逆回復時間 trr など):導通から遮断へ切り替わる際に、電流が完全に止まるまでのふるまいです。スイッチング電源や高速信号では損失やノイズの原因になります。
  • 温度特性:一般に温度上昇でVfは下がり、漏れ電流は増えやすくなります。周囲温度と放熱条件を前提に設計します。

ダイオードの種類

ダイオードは用途に応じて多くの種類があります。ここでは回路設計で登場頻度が高い代表例を整理します。

整流用ダイオード

整流用ダイオードは、交流を直流に変換するための基本部品です。交流の片側だけを通し、脈動する直流を作ることで整流を実現します。商用電源の整流のように周波数が低い用途では一般整流ダイオードが使われますが、スイッチング電源のように高速にオン・オフが切り替わる用途では、逆回復が小さい高速整流タイプが必要になることがあります。

ショットキーダイオード

ショットキーダイオードは、金属と半導体の接合(ショットキー接合)を利用し、一般に順方向電圧降下が小さく、高速動作に向く傾向があります。電源の損失を減らしたい用途でよく採用されます。

一方で、逆方向耐電圧が低めの品種が多く、漏れ電流が大きくなりやすいというトレードオフもあります。低電圧・大電流の整流には有利ですが、高耐圧が必要なラインでは使いにくい場合があります。

ツェナーダイオード

ツェナーダイオードは、逆方向で特定の電圧付近から電圧を一定に保つように動作するダイオードです。簡易的な基準電圧や過電圧クランプに使われます。

ツェナー電圧だけでなく、許容電力(発熱)と動作電流の範囲も重要です。電流が小さすぎると規定の電圧にならず、大きすぎると過熱で破損するため、抵抗などで電流制限して使います。

発光ダイオード(LED)

LEDは、順方向電流を流すと発光するダイオードです。表示灯、バックライト、照明などに広く使われます。LEDは電圧でなく電流で扱うのが基本で、直列抵抗や定電流回路で電流を制御します。放熱が不十分だと光量低下や寿命短縮につながるため、温度上昇も含めて設計します。

ダイオードの用途

ダイオードは「整流」以外にもさまざまな用途で使われます。用途ごとに見るべき特性が変わるため、代表的な使い方を押さえておくことが重要です。

電源回路での整流

交流を直流に変換する整流回路(半波整流、全波整流、ブリッジ整流)で利用されます。整流後の脈動はコンデンサなどで平滑し、必要に応じてレギュレータで安定化します。

選定では、逆耐圧と電流定格(平均・ピーク)に加え、順方向電圧降下による損失と発熱が要点になります。大電流になるほど損失が増え、パッケージや基板放熱が不足すると温度上昇で故障しやすくなります。

過電圧保護(クランプ)

過電圧保護では、ツェナーダイオードやTVS(サージ吸収用ダイオード)を使って電圧をクランプし、後段回路の破損を防ぎます。保護設計は「守りたい回路が許容できる最大電圧」と「想定されるサージの大きさ(エネルギー)」から逆算します。

たとえば外部配線が長い信号線や電源ラインでは、静電気放電や誘導サージが入りやすく、保護素子がないと一撃で破損することがあります。単に「ツェナー電圧が合うか」だけでなく、許容電力と応答特性も含めて選ぶ必要があります。

逆接保護

電源の極性を誤って接続した場合に回路を守るため、ダイオードが使われます。代表的なのは、電源ラインに直列に入れて逆接時に電流が流れないようにする方式です。

ただし直列方式は、通常時にもVf分だけ電圧が落ち、損失(発熱)も発生します。低電圧駆動の機器ではこの電圧降下が致命的になることがあるため、ショットキー採用や、さらに低損失が必要ならMOSFET方式も検討対象になります。

信号の切り替え・整形

ダイオードは、ダイオードOR回路による信号の合成、クランプ回路による波形整形、簡易的な検波などにも使われます。高速信号では寄生容量や逆回復の影響で波形が崩れることがあるため、用途に合った高速ダイオードを選びます。

発光・表示用途

LEDは表示灯や照明として使われます。設計では順方向電圧(色や品種で異なる)と定格電流を確認し、電流制限(抵抗または定電流回路)を必ず入れます。放熱が不十分だと温度が上がり、発光効率低下や寿命短縮につながります。

ダイオードの選定とポイント

ダイオードの選定は、「回路条件(電圧・電流・周波数・温度)を満たし、損失と信頼性のバランスを取る」作業です。定格を満たしていれば何でもよい、という考え方では設計不良が起きやすいため、用途ごとに優先順位を整理します。

電流容量と逆耐圧

まずは電流容量と逆耐圧が必須条件です。整流用途では平均電流だけでなく、コンデンサ入力の整流回路などでピーク電流が大きくなる点に注意します。データシートには平均整流電流やサージ電流などが記載されているため、波形条件に合わせて確認します。

逆耐圧は余裕を持たせて選びます。電源ラインや誘導性負荷ではスパイク電圧が発生し、名目電圧より高い逆電圧が加わることがあるためです。

順方向電圧降下と損失(発熱)

順方向電圧降下は損失と発熱に直結します。損失の目安は P ≈ Vf × I です。低電圧・大電流の回路では、この損失が効率と温度上昇を左右します。

たとえば電源の直列保護にダイオードを入れる場合、Vfが0.7Vで1A流れると約0.7Wの損失になります。小型パッケージでは温度が上がりやすく、放熱設計が不足すると故障の原因になります。効率や温度が課題なら、Vfの低い品種や放熱性の高いパッケージを検討します。

スイッチング特性(逆回復)

スイッチング電源や高速整流では、逆回復が損失やノイズの主要因になります。一般整流用ダイオードは逆回復が大きく、スイッチング周波数が高い回路では発熱やEMIの悪化を招くことがあります。

用途に応じて、ファストリカバリ、ウルトラファスト、ショットキーなど、逆回復特性を意識した選定が必要です。

漏れ電流と温度特性

逆方向の漏れ電流は、高インピーダンス回路や省電力回路で無視できないことがあります。特に温度が上がると漏れ電流が増えやすく、想定外の電圧ずれや消費電流増加につながる場合があります。低消費電力設計では、漏れ電流の仕様値も確認します。

パッケージと実装性(放熱の考え方)

パッケージは、実装方式(SMD/スルーホール)、基板スペース、放熱条件で選びます。高電力用途では、熱抵抗やパッケージ形状だけでなく、基板の銅箔面積や放熱ビアの有無で温度上昇が大きく変わります。

「部品単体の定格=実装後に安全に使える」という意味ではありません。周囲温度や実装条件を前提に、温度上昇の見積もりや実測も含めて判断します。

まとめ

ダイオードは、電流を一方向に流しやすい性質を利用して、整流・保護・信号処理・表示など幅広い回路で使われる基本部品です。設計では逆耐圧と電流定格に加え、順方向電圧降下による損失と発熱、スイッチング時の逆回復、漏れ電流や温度特性まで含めて選定することが重要です。用途に合った種類(整流用、ショットキー、ツェナー、LEDなど)を使い分け、回路条件と実装条件を踏まえて設計することで、効率と信頼性の高い回路につながります。

Q.ダイオードは「電流を一方向にしか流さない部品」ですか?

逆方向でも漏れ電流は流れ、逆耐圧を超えるとブレークダウンが起きます。

Q.順方向電圧降下(Vf)はなぜ重要ですか?

Vfは損失(P≈Vf×I)と発熱に直結し、電圧不足や効率低下の原因になります。

Q.整流用ダイオードを選ぶときの最低限の基準は何ですか?

最大逆耐圧と平均・ピーク電流の定格を満たし、損失と放熱条件を合わせて確認します。

Q.ショットキーダイオードのメリットは何ですか?

順方向電圧降下が低く高速動作に向き、整流損失を抑えやすい点がメリットです。

Q.ショットキーダイオードの注意点は何ですか?

逆耐圧が低めで漏れ電流が大きくなりやすく、用途によっては不適合になります。

Q.逆接保護で直列ダイオードを入れると何が起きますか?

通常時もVf分だけ電圧が低下し、電流に比例した損失と発熱が発生します。

Q.ツェナーダイオードは何に使いますか?

逆方向で電圧を一定に保つ性質を利用し、基準電圧や過電圧クランプに使います。

Q.スイッチング電源でダイオード選定が難しいのはなぜですか?

逆回復特性が損失とノイズに直結し、一般整流用では発熱やEMI悪化を招くためです。

Q.LEDを点灯させるときに抵抗や定電流回路が必要なのはなぜですか?

LEDは電流で明るさが決まり、電圧だけで駆動すると過電流で破損しやすいためです。

Q.データシートの定格を満たしていれば放熱は不要ですか?

実装条件で温度上昇は変わるため、損失と基板放熱を前提に温度を評価する必要があります。

記事を書いた人

ソリトンシステムズ・マーケティングチーム